The essential mitotic peptidyl-prolyl isomerase Pin1 binds and regulates mitosis-specific phosphoproteins.

نویسندگان

  • M Shen
  • P T Stukenberg
  • M W Kirschner
  • K P Lu
چکیده

Phosphorylation of mitotic proteins on the Ser/Thr-Pro motifs has been shown to play an important role in regulating mitotic progression. Pin1 is a novel essential peptidyl-prolyl isomerase (PPIase) that inhibits entry into mitosis and is also required for proper progression through mitosis, but its substrate(s) and function(s) remain to be determined. Here we report that in both human cells and Xenopus extracts, Pin1 interacts directly with a subset of mitotic phosphoproteins on phosphorylated Ser/Thr-Pro motifs in a phosphorylation-dependent and mitosis-specific manner. Many of these Pin1-binding proteins are also recognized by the monoclonal antibody MPM-2, and they include the important mitotic regulators Cdc25, Myt1, Wee1, Plk1, and Cdc27. The importance of this Pin1 interaction was tested by constructing two Pin1 active site point mutants that fail to bind a phosphorylated Ser/Thr-Pro motif in mitotic phosphoproteins. Wild-type, but not mutant, Pin1 inhibits both mitotic division in Xenopus embryos and entry into mitosis in Xenopus extracts. We have examined the interaction between Pin1 and Cdc25 in detail. Pin1 not only binds the mitotic form of Cdc25 on the phosphorylation sites important for its activity in vitro and in vivo, but it also inhibits its activity, offering one explanation for the ability of Pin1 to inhibit mitotic entry. In a separate paper, we have shown that Pin1 is a phosphorylation-dependent PPIase that can recognize specifically the phosphorylated Ser/Thr-Pro bonds present in mitotic phosphoproteins. Thus, Pin1 likely acts as a general regulator of mitotic proteins that have been phosphorylated by Cdc2 and other mitotic kinases.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Proteasomal degradation of human peptidyl prolyl isomerase pin1-pointing phospho Bcl2 toward dephosphorylation.

Microtubule inhibitor-induced Bcl2 phosphorylation is detrimental to its antiapoptotic function. Phosphorylation of Bcl2 predominantly occurs on two serine residues (70 and 87) in cells arrested at G2-M phase by microtubule disarraying agents. Phospho Bcl2 can associate with a cis-trans peptidyl prolyl isomerase, Pin1. Pin1 and its homologues are known to target the proline residue carboxyl ter...

متن کامل

Juglone inactivates cysteine-rich proteins required for progression through mitosis.

The parvulin peptidyl-prolyl isomerase Pin1 catalyzes cis-trans isomerization of p(S/T)-P bonds and might alter conformation and function of client proteins. Since the trans conformation of p(S/T)-P bonds is preferred by protein phosphatase 2A (PP2A), Pin1 may facilitate PP2A-mediated dephosphorylation. Juglone irreversibly inhibits parvulins and is often used to study the function of Pin1 in v...

متن کامل

Phosphorylation-dependent proline isomerization catalyzed by Pin1 is essential for tumor cell survival and entry into mitosis.

Pin1, a member of the parvulin family of peptidyl-prolyl cis-trans isomerases (PPIases) has been implicated in the G2-M transition of the mammalian cell cycle. Pin1 interacts with a series of mitotic phosphoproteins, including Polo-like kinase-1, Cdc25C, and Cdc27, and is thought to act as a phosphorylation-dependent PPIase for these target molecules. Pin1 recognizes phosphorylated serine-proli...

متن کامل

Prolyl isomerase Pin1: a catalyst for oncogenesis and a potential therapeutic target in cancer.

Phosphorylation of proteins on serine or threonine residues preceding proline (Ser/Thr-Pro) is a major intracellular signaling mechanism. The phosphorylated Ser/Thr-Pro motifs in a certain subset of phosphoproteins are isomerized specifically by the peptidyl-prolyl cis-trans isomerase Pin1. This post-phosphorylation isomerization can lead to conformational changes in the substrate proteins and ...

متن کامل

The mitotic peptidyl-prolyl isomerase, Pin1, interacts with Cdc25 and Plx1.

The cis/trans peptidyl-prolyl isomerase, Pin1, is a regulator of mitosis that is well conserved from yeast to man. Here we demonstrate that depletion of Pin1-binding proteins from Xenopus egg extracts results in hyperphosphorylation and inactivation of the key mitotic regulator, Cdc2/cyclin B. We show biochemically that this phenotype is a consequence of Pin1 interaction with critical upstream ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Genes & development

دوره 12 5  شماره 

صفحات  -

تاریخ انتشار 1998